
How (not) to create a
language specification for Perl 6

Lessons learned

Patrick R. Michaud
pmichaud@pobox.com

FOSDEM 2015
Brussels, Belgium
January 31, 2015

mailto:pmichaud@pobox.com

Overview

What are language specifications?

Perl 6's design process, some mistakes

Important features of language specifications

Where to go from here

Talk history

Reflections on Perl 6 language specification

Imprecision in our discussions

Time to apply some rigor

Release of Perl 6.0.0 will require it

Opinions expressed here are
solely those of the presenter

May be unwise, untested,
incorrect, etc.

Language specification basics

What is a “language specification”?

Many languages have them (Ada, Pascal, C)

Many languages don't have them
Perl 5
PHP prior to 2014

Different forms of specification
Explicit definition using syntax and formal semantics
Natural language description
Model implementation

What is a “specification”?

From Wikipedia (italics added):

Specification (often abbreviated as “spec”) may refer
to an explicit set of requirements to be satisfied by a
material, design, product, or service.

Specification generally contains requirements,
not conjectures.

Example language specifications: C

The C Programming Language
Kernighan and Ritchie, 1978

ANSI C, C89, ISO/IEC 9899:1990

C99

C11

Example language specifications: Python

Python doesn't have an official
language specification

Python Language Reference
describes the language, but
leaves some details
ambiguous

Example language specification: HTML / RFCs

HTML is in fact a language

It has a formal specification

Maintained by W3C

Early versions were RFCs

Many RFCs are specification documents
HTTP, SMTP, URLs, etc.

Perl 5 language specification... ?

How is the Perl 5 language
specified?

The camel book?

The interpreter?

The test suite?

Larry?

Perl 5

Perl 5 doesn't have a separate
written language specification.

The Perl 5 interpreter and its functional tests
serve as the de facto specification.

Whatever behavior the Perl 5 interpreter has,
that's the “standard” behavior.

If Perl 5 misbehaves, see the previous rule.
Even if Perl 5 changes its mind.

The Perl 6 language spec history

Brief Perl 6 history

Perl 6 announced July 2000

RFCs commissioned
361 submitted

Larry refined these into Apocalypses and
Synopses

Unlike Perl 5:
Perl 6 would first become a specification
Then realized by one or more implementations

Oops.

In retrospect,

targeting a “language specification”

before implementation

is a mistake.

Lesson learned

Not a “specification”

“Specification” is too loaded with
meaning

Implies a level of rigidity and
permanence

“design plan”? Yes
“Synopses”? Sure, that works

Careless use of “Perl 6 specification” has led to
much confusion about development of Perl 6

Confusion in the community

“When will Perl 6 be ready?”

“Is the Perl 6 specification
finished yet?”

“Well, no wonder it's taking so long, if you can't
even decide on a specification first.”

I've always disliked this one...

“Perl 6 needs to freeze a specification
immediately, implement that, and release it.”

No.

Misunderstanding language design

Many assume a specification
precedes language implementation

It's a common misconception

Descriptions of Perl 6 development
reinforced this incorrect notion

… and still do!

Reality: Successful languages and systems are
striking counter-examples:

 Perl 5, PHP, C, Ruby, HTML, HTTP

Premature specification examples

HTML+ (1993)
Effectively delayed HTML and browser development

C99 (1999)
After C99, the C standards committee adopted
guidelines to limit adoption of new features untested
by implementations.

Premature specification

“Writing a specification before an
implementation has largely been avoided

since ALGOL 68 (1968), due to unexpected
difficulties in implementation when

implementation is deferred.”

– Wikipedia

Lesson learned

Specification freezes aren't like code freezes.

Specification releases aren't like code releases.

Specs should be (very?) retrospective.

Illustration: Internet Standards Process

Proposals start as Internet Drafts

Become Requests for Comments (RFCs)

May be considered on the Standard Track as a
“Proposed Standard”

Promotion to “Internet Standard” requires:
Two independent operating implementations
No errata against specification
No unused features that increase complexity
Two independent uses of any licensing restrictions

Key features of (Perl 6) specification

Lesson: Evolution is a constant

A programming language is never “frozen”
(until it's dead)

Perl 6 design explicitly recognizes evolution:
Lexically scoped language modifications
Versioned specification
Versioned modules
Macros
Custom operators / parsing / DSLs
Slangs
Augmented classes / MONKEY_TYPING
Classes are never “final”

Camelia, our queen
of metamorphosis

Language lessons

Sharp distinction beween “specification” and
“implementation”

“Perl 6” and “Perl 6.0.0” refer to the language

No “official” implementation of Perl 6

Multiple implementations are key to long-term
adaptation, evolution, success

Lesson: Synopses should not be spec

Synopses were the original “Perl 6 specification”

These change frequently with language evolution
and discovery

Difficult to version synopses as spec

Changed circa 2008 to:

“Perl 6 is anything that passes
the official test suite.”

– Synopsis 1

Where we go next

More precision in description

Establish / release “Perl 6.0.0”

Better understanding of “Perl 6 spec”

Specification follows implementations

Specification is a set of tests...

 ...not the design documents

Remove false references

Some documents still refer to Synopses as
“official Perl 6 specification”

Various histories of Perl 6
Wikipedia and similar articles

Fix these!

Attention!

Our GitHub repository for Synopses is
(mis)named “specs”

This bothers me

I will change this

Soon

Without further warning

Forgiveness > Permission

Specification toolchain

Perl 6 specification will be defined by test suite

Current test suite has things that are not yet
“spec”

It will always have such “extra” tests

Mechanism to identify / extract the test suite for a
given Perl 6 version

Git tags useful but likely not sufficient

Fudge factor

The “roast” test suite already exists in subsets

Per-implementation “todo” and “skip” markers
pre-processed into test files

#?rakudo.moar todo “Not yet implemented"

May be able to use similar markers for Perl 6
versions

#?v6.0.0 omit 5 “Conjectural”

Consider feature lifetimes

Language features may have lifetimes:

Conjecture
Work in progress
Adopted
Discouraged
Deprecated
Retired

Perhaps specification should explicitly recognize
this somehow

Version guidelines

Criteria for declaring new versions of Perl 6

Time-based language specification?

Tag Synopsis documents?

Develop way to tag Synopsis documents with
language version information

Perhaps at section / paragraph level

Doesn't have to be static or snapshot, can evolve
over time

Recap

Widespread misconceptions about the role of
“specifications” in language development

Specifications work best as historical markers

Languages evolve

Perl 6 has robust features for evolution

Separate specification and implementation

Test-based specification

Need to design versioning standards

Questions?

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

