
Advanced Mindstorms Programming
for FLL

Patrick R. Michaud
Republic of Pi FLL #3034
pmichaud@pobox.com

October 26, 2013

mailto:pmichaud@pobox.com

Goals for this clinic

Help teams get better robot performance

Identify better programming techniques

Provide tips that have worked for our team

Point out traps that have caused us frustration

Consistency

Good programming and strategy are essential to
consistently good performance

Needed to overcome the limitations of hardware

Great robot + poor strategy == inconsistent scores

Fair robot + good strategy == consistent scores

My Blocks

Organize a set of blocks into a sequence

Fundamental programming concept

Use for:

Any block sequence that is reused frequently

Move a distance

Turn an angle

Follow a line

To organize programs into more readable units

TIP: Create a My Block for each mission

TIP: Combine multiple mission My Blocks into “trip” My Blocks

Moving forward a distance
Introduction to My Blocks

Move forward a distance

Specify distances in linear units (in, cm)

Need to know circumference of driving wheels

Several options:

Calculate from printed wheel diameter

Measure wheel diameter

Use robot to determine circumference (best!)

Calculating circumference

Create a program that moves forward 5 rotations,
then waits for 2 sec

Run program and measure
distance traveled by robot

wheel_circumference =
 distance / motor_rotations

TIP: Use centimeters for measuring units

TIP: Always have a measuring tape handy

87.6 cm / 5 == 17.52 cm

Move forward a distance

Start with an empty program

Add constant blocks for power and distance

Add a division block to calculate rotations

Wire A input to distance

Set B value to wheel circumference

Move forward a distance

Add a multiplication block to convert rotations to
degrees

Move forward a distance

Add a Move block

Wire power input to power constant block

Wire degrees input to output of multiplication block

Test the program to verify it works

If distance is off, adjust circumference value

Create a “movedist” My Block

Drag to select everything but constant blocks

Select “My Block Builder” from Tools menu

Create a “movedist” My Block

Give the My Block a
name

Click “Parameter Setup”

Name the parameters
“power” and “cm”

You can also provide
default values

Create a “movedist” My Block

Click “Parameter Icons”
to change input icons

Click “Finish”

You now have a
“movedist” block on the
My Blocks palette

TIP: Be consistent with parameter names and icons in your My Blocks

Create a “movedist” My Block

Create a new program to test the “movedist”
block.

Experiment: What happens if negative power or
distance is given?

TIP: In the EV3 software, negative power and distance values cause the motors to reverse

Turning the robot

Robot turns

Many types of turns

Point turn – robot spins in place

Pivot turn – robot turns about a fixed wheel

Wide turn – robot turns about an arc

Fundamental concept

The robot will turn when one wheel moves at a
different speed from the other

The greater the difference in speeds,
the tighter the turn

Pivot turns

One wheel turns while other is stationary

Our team has primarily used pivot turns

Most reliable and repeatable

Pivot turn formula

motor_degrees =
turn_angle * wheel_track / wheel_radius

“Motor degrees” is how far to move the turning
motor

“Turn angle” is degrees robot is to turn

“Wheel track” is distance between two wheels

Wheel radius can be calculated from
circumference

Pivot turn formula

motor_degrees =
turn_angle * wheel_track / wheel_radius

Pivot turn formula

motor_degrees =
turn_angle * wheel_track / wheel_radius

If wheel track is 3x wheel
radius, the robot will turn
360 degrees when the
moving wheel makes
3 rotations.

Pivot turn My Block

Pivot turn My Block

Calculate wheel track value experimentally:

Start with an estimate of wheel track

Adjust up or down until robot turns proper angle

TIP: LEGO stud centers are exactly 8mm apart

Pivot turn My Block

TRAP: Be sure to positively brake the pivot wheel

Otherwise, wheel can “coast” and affect turn

Pivot turn My Block

Once everything is working, turn it into a My
Block

Can have separate blocks for turning left and
turning right

Or combine using a switch block and logic input

Four pivot turn directions

Strategy: The robot has four pivot turn directions
available

Keep all of them in mind when planning
navigation

Stops

Stops

TRAP: Be sure the robot comes to a full stop
between moves

When Move blocks complete, they brake the
motors

Inertia carries the robot further though, and the
motors have to back up a little bit

This takes a little time

Your programs need to account for this

Video

Rotation sensor after brake

“Stop” My Block

A simple My Block to use for stopping

Place it at the end of any movement My Blocks
where you want to be sure the robot has stopped

Odometry error

Odometry

Using distances and turn angles to navigate a
robot is called “odometry”

It's useful, but depends on the quality of robot
components

Mindstorms robots can have a lot of odometry
error

Sources of odometry error

Friction

Gear slack

Wheel slippage

Battery charge

Timing issues

How significant?

Suppose a robot travels 100 centimeters, but its
heading is “off” by 1 degree:

Q: How far off will it be after 100 cm?

100 cm straight

How significant?

Suppose a robot travels 100 centimeters, but its
heading is “off” by 1 degree:

Q: How far off will it be after 100 cm?

A: 1.74cm

If you're trying to reach something small on the
far side of table, you need more accuracy.

100 cm straight

How significant?

LEGO NXT motors regularly have 5-10 degrees
of “slack” in the internal gearing

A robot built with Mindstorms parts can easily
have 5 degrees of “error” per turn

TIP: Run the same program multiple times, use Post-It flags to mark the results

Overcoming odometry error

Strategy: Use field elements for navigation

Lines Walls

Mission models Other

Strategy: Never make more than two turns
without re-orienting with something on the field

Stopping at a field line

Light and color sensors
can be used to stop when
reaching certain places on the field

TIP: For Nature's Fury, the colored scoring area lines may not be thick enough to
use reliably. Be sure to test carefully before relying on them.

Understanding light sensors

Light sensors have several different “modes”

Color – used to detect specific colors

black, blue, green, yellow, red, white

Ambient light – the amount of light reaching the sensor

Reflected light – same as ambient light, but the
sensor's LED is turned on

In all of these modes, external lighting can affect
the readings

Reflected light mode

The light sensor returns a value from 0 to 100

0 == sensor is receiving almost no light

100 == sensor is receiving a lot of light

Use the robot to determine what the sensor is
detecting

Light graph

Tip: Write a program to graph light values as the
robot moves

Stop at a black line

TIP: Our team has always used raw light values w/o any light sensor calibration

Following a line
(actually following an edge)

Line (edge) following

There are many ways to follow lines

Our team uses a simple proportional line follower
to follow a boundary between light and dark
areas

2013-10-28
More slides coming soon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

